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Abstract

A study was performed to examine the effects of stereovision and wide field of
view (FOV) and their possible interaction with teleoperator performance. The
study used a 2x2 (narrow versus wide FOV and mono versus stereo vision)
randomized between-subjects design. There were 24 subjects in all, 6 per cell, in
conditions of monoscopic-narrow FOV, monoscopic-wide FOV, stereoscopic-
narrow FOV, and stereoscopic-wide FOV. No significant interaction effects were
found for time or error rate measures. However, analyses of variance (ANOV As)
yielded significant differences between mono and stereo vision for error rate
(number of obstacles contacted) as well as reported motion sickness symptoms on
the FOV dimension. Self-reported stress levels from pre- to post-run also yielded
significant differences on the mono-stereo dimension. Chi-square analyses were
performed on questionnaire data for condition preferences. A first chi-square
analysis revealed significant findings of first choice of viewing condition, which
was stereoscopic-wide FOV. Additionally, a second chi-square analysis of unique
viewing conditions showed a significant effect of stereovision; it was the single
most preferred viewing condition of all four,
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THE EFFECT OF STEREOSCOPIC AND WIDE FIELD OF VIEW
CONDITIONS ON TELEOPERATOR PERFORMANCE

INTRODUCTION

The U.S. Army Research Laboratory (ARL) is the Army’s lead laboratory for
teleoperated vehicle systems research. The Telepresence Interface Research Team of the Soldier
Systems Control Branch of the Human Research and Engineering Directorate (HRED) of ARL
has a high mobility, multipurpose, wheeled vehicle (HMMWYV) remotely driven via a data link
and sensors that allow various configurations of visual, auditory, and simulated force feedback
(see Figure 1). With the recent addition of multiple stereoscopic (stereo) camera sets, the
performance benefits of wider fields of view (FOV) and stereo vision are promising but are
unsubstantiated.

Figure 1. Teleoperated HMMWYV with stereo cameras mounted.

The Joint Project Office Program Manager Unmanned Ground Vehicles/Systems
(JPO PMUGYV/S) is planning to field the first unmanned system after the year 2000 for use in
reconnaissance, surveillance and target acquisition (RSTA) missions, as well as in infantry and
artillery support missions. However, performance shortcomings exist for teleoperated systems.
The performance shortcoming of land teleoperated systems was first identified during the Office



of the Secretary of Defense (OSD) Demonstration (DEMOQ) I. During this demonstration of
teleoperated systems technology, it was noted that to maintain proper vehicle control, vehicle
operators seldom exceeded 5 mph on secondary roads. Additionally, the surrogate teleoperated
vehicle (STV) operational test forced the use of two operators working simultaneously, one for
vehicle operation and one for navigation. The STV system had little or no usable situational
awareness information and was often lost. The fiber-optic connection to the vehicle had to be
followed to find the vehicle. In addition, the STV tipped over more than once, which was
attributed to a lack of vehicle orientation cues (pitch and roll and depth perception). Performance
time for teleoperated driving, at present, is about twice that of on-board driving (Mitchell,
Yeager, Suarez, Griffin, & Seibert, 1994). Time to complete a teleoperated driving task required
approximately 6 minutes as compared to 3 minutes on board. ‘This is most likely because
vestibular input (motion sensation) was absent, the nature of the electronic viewing equipment
(low resolution, FOV, and depth perception) was degraded, or both.

To address this shortcoming, the JPO PMUGV/S requested ARL’s assistance in
assessing the effect of new technologies on teleoperator performance. In response, ARL (HRED)
developed a program to enhance the soldier performance of such systems through the
exploitation of sensory feedback technologies. The goals of ARL’s research program were to (a)
develop a teleoperated system test bed, (b) develop a test course to benchmark system
performance, (c) examine and develop metrics of system effectiveness, (d) maximize soldier
performance in this environment, approaching or even exceeding on-board driving performance,
and (e) identify characteristics leading to the selection of good teleoperator candidates (including
resistance to simulator and motion sickness).

As stated previously, ARL is presently using a HMMWYV modified for teleoperation
performance studies. This includes a control station placed in a modeled section of a HMMWV.
This control station (operatdr control unit [OCUY) is configured to provide ARL experimenters
with vehicle performance data (speed, revolutions per minute, gear changes) and soldier
performance data (test course completion time, error rate, steering wheel activity, brake and
accelerator use). This OCU also allows the manipulation of sensory feedback variables such as
monoscopic (mono) versus stereoscopic (stereo) viewing, narrow and wide FOV (55° and 165°,
horizontal), monaural or binaural audio feedback, and variable steering wheel force feedback (see
Figure 2). The two visual variables in question for this study are narrow and wide FOV,
stereoscopic (3D) and monoscopic (2D) viewing, and their interaction.



Figure 2. ARL mock-up of the OCU.

The stereo vision system uses one ultra-high frequency (UHF) television signal that is switched
at a high rate from the right to the left cameras. This signal is multiplexed between the right and
left sides and brought back to the operator station via a radio link and split again to reproduce the
right and left camera views simultaneously on the viewing screen. However, to receive the full
stereo effect, the operator must look through a pair of electronically shuttered glasses which, in
effect, synchronize the right and left eye images. The wide FOV is accomplished by using three
stereo pairs of cameras to comprise a horizontal FOV just exceeding 165°. This expanded FOV is
viewed on three display monitors, set next to each other, forming a semicircle.

The literature has much to say about the stereo viewing issue. Research can be traced as
far back as Wheatstone (1838), who demonstrated that all that is necessary for visually
perceiving objects in three-dimensional space are the two 2D retinal images and the visual motor
adjustments those objects would normally produce. Most of the literature is focused into two
distinct areas: remote operation of vehicles and remote operation of manipulator systems.
Manipulator research is addressed first.



The common element among stereo viewing research for tele-manipulation is the
performance of a task in 3D space and the associated perception of that space. Teleoperated
driving can be included in this domain, Therefore, it is relevant to include performance research
that concerns tele-manipulation because of its stated relevance to teleoperated driving.

Manipulation Tasks - Stereo

Several remote manipulator studies imply that there is no advantage for stereo. Kama
and DuMars (1964) compared performance of a manipulator task (peg in hole) with both 2D and
3D viewing systems. They reported no advantage for stereoscopic (3D) over monoscopic (2D)
viewing, However, this study was replicated by Chubb (1964) who found that the lack of
significant difference in operator performance was attributable to a shortcoming in the quality of
the stereoscopic viewing system. The study performed by Chubb revealed that performance
times were 20% longer with the use of a 2D system instead of a 3D system, demonstrating the
advantage of stereoscopic displays. In a study (Mohr, 1986) comparing high definition (HD)
color TV, HD monochrome TV, standard resolution monochrome TV, and standard resolution
stereo monochrome TV, the HDTV led to a lower rate of errors when remote handling tasks were
performed, but the amount of time required to perform tasks was not reduced. No differences
were found for the stereo condition.

In a study by Hudson and Cupit (1968), the accuracy of size and distance judgments
using monocular and stereo TV displays was examined. They studied 20- to 200-foot and 4- to
12-inch inter-camera distances. Their results showed that for trained subjects, there was no
significant difference between stereo and non-stereo presentations. They also maintained that
there is “little superiority of 3D viewing over 2D viewing at distances of more than a few feet.
This seems true for all interocular distances that have been investigated.”

A study by Crooks, Freedman, and Coan (1975) reported advantages for stereo in remote
manipulation tasks, specifically, reduction of positioning error. Positioning error was found to be
best reduced by using a two-view system. However, stereo provided greater time reduction and

reduced positioning error significantly over monoscopic conditions.

Merritt (1978) found significant advantage of stereoscopic over monoscopic displays for
the peg-in-hole task, messenger line feeding task, and total error rate under three different levels
of turbidity (the amount of suspended particles in water, creating varying visibility).
Stereoscopic display systems were not as susceptible to turbidity differences as monoscopic
display systems were,



Studies performed by Smith, Cole, Merritt, and Pepper (1979) measured subject
performance in a remote manipulator peg-in-hole task under both stereo and mono TV. Task
performance was superior in stereo over mono during all conditions tested. Another experiment
was conducted with naive subjects to assess the degree of learning during test conditions. Results
demonstrated that the task showed significantly less advantage for stereo. This was in
accordance with the authors’ hypotheses. Still another experiment was conducted using visually
complex tasks. Stereo was superior to mono during all conditions tested.

In 1988, Cole and Parker studied the effects of stereoscopic versus monoscopic displays
on the remote performance of a simulated space station assembly task. Performance with stereo
was significantly superior to that with mono in three of four experiments. The non-significance in

one experiment was attributed to the accumulation of practice effects across the first two studies.

In 1989, Drascic, Milgram, and Grodski evaluated the learning effects in tele-manipulation
with monoscopic versus stereoscopic remote viewing, Performance during monoscopic viewing
conditions improved by 20% to 30% because of practice effects, while stereo yielded better
performance throughout. Because of the richness of monoscopic depth cues, subjects were
rapidly able to improve performance to nearly that of the stereoscopic display. Subjects did not
demonstrate any improvement while using the stereoscopic display; they essentlally performed as
well during the beginning trials as the ending trials.

In another study by Drascic (1991), he demonstrated that the benefits of stereoscopic
viewing, even after much practice, will still be apparent for difficult, stereoscopic vision-dependent
tasks. The performance benefits of stereoscopic vision, even though they fade for highly
repeatable tasks, will be strongly evident in single-attempt situations, which is often the case in a
military setting. |

McLean and Prescott (1991) found that manipulator performance time and failure rates for three
different visual systems yielded results consistent with other stereo research, as shown in Table 1.
Table 1

Manipulator Performance Time and Failure Rates
for Three Different Visual Systems

Viewing condition Time (s) Failure rate (percent)
Mono 95.9 20.0
Stereo 61.3 7.0
Direct view 42.4 5.5




Driving Tasks

The available research data about teleoperated driving are extremely limited and

~ contradictory in nature; some research proposes that there is an advantage in performance for
stereo vision systems, while other research maintains that there is no advantage for stereo vision
systems. No conclusive data exist that demonstrate performance or preference for monoscopic
versus stereoscopic vision systems for tactical teleoperated driving. Tactical driving refers to
driving cross country without the set of cues found in road following, where road edges provide
the dominant indicator for immediate path negotiation.

Driving Tasks - Stereo

Several pieces of literature report that there are no significant differences for stereo
vision specifically for driving tasks. Spain (1987) used stereoscopic versus monoscopic displays
to directly drive a vehicle and found no difference between the two types of displays. Results of
the advanced ground vehicle technology (AGVT) concept evaluation program (CEP) tests at Fort
Knox (Kress & Almaula, 1988) showed that stereoscopic vision provided no apparent
enhancement of teleoperated vehicle control. However, experience with the AGVT indicated that
stereo vision may contribute to short range viewing to provide the operator better judgment of
slope and extent of negative terrain features such as holes or ditches.

There are also some accounts of the advantage for stereo driving in the literature.
A study performed by Pepper (1983) concluded that while stereo TV is more cosﬂy and
complex, it provides performance advantages in tasks that (a) require positioning in the depth
plane, and (b) involve unfamiliar scenes or reduced contrast. McGovern (1987) reports that
negative obstacles are extremely difficult to see using [monoscopic] television and that this
contributes to the many problems in vehicle teleoperation such as unwanted obstacle coﬁtact,
vehicle positioning errors, and potential vehicle losses. McGovern suggests that stereo vision
may help in the identification of negative obstacles, but no studies are reported.

Driving - Field of View

The documented evidence of the effects of varying fields of view is small but fairly
consistent. Literature with direct application of data from formal studies is limited, but several
sources report anecdotal evidence. The strongest data point for the utility of expanded FOV
comes from studies involving driving tasks, specifically obstacle avoidance and path following,



In a reference by Kress and Almaula (1988), operators concluded that the wide FOV
(three 60° FOV cameras) was very useful for turning and maneuvering in close quarters and for
driving cross country. Kress and Almaula (1988) reported that wider FOV's are also useful for
maintaining spatial orientation with respect to landmarks and terrain features. They also
reported the width of the FOV is related to motion sickness effects and that a wide FOV would
produce such effects. They also reported that wide FOV resulted in “easier operation”.

McGovemn (1987) also reported that drivers found it difficult to operate a vehicle in
restricted space with a narrow FOV. McGovemn’s study used two fields of view: narrow (40°
horizontal) and wide (three 40° cameras for a 120° FOV). The wider FOV resulted in “easier”
operation by subjects, for critical off-road driving tasks in unfamiliar terrain. Eveleth (1976)
concluded that teleoperators become preoccupied with driving tasks and are therefore unable to
detect target arrays at extremely close distances. This was most likely because of the amount of
concentration given to driving tasks during a narrow FOV condition.

Silverman (1982) found that there was a significant decrease in the number of obstacles hit
during wide FOV as compared to narrow FOV conditions.

To the contrary, Gordon (1966) found that if a path is familiar and has no obstacles, then
a narrow FOV is adequate. Gordon found that operators could drive as fast as 25 kphon a
~ curved two-lane road with a monocular field as small as 4°. He concluded that information
derived from the road edges and center line was sufficient for vehicle steering control. These cues
are not available in off-road conditions.

The studies involving the use of stereo by Smith et al. (1979), Cole and Parker (1988),
Drascic et al. (1989), Drascic (1991), and McLean and Prescott (1991) demonstrate an
accelerated learning effect for a mono viewing condition after having trained during a stereo
viewing condition in static environments. This gives credence to the opposing studies (Hudson
& Cupit, 1968) that suggest no advantage for stereo viewing in trained subjects. The notion that
one may learn in stereo and transfer learning to a mono viewing condition for static environments
(e.g., a nuclear fuel-handling facility) is well established; however, the cost of a mistake may
drastically outweigh the cost of a stereo viewing system.

The studies of McGovern (1987), Silverman (1982), and Kress and Almaula (1988)
agree on the fact that a wide FOV, such as 120° to 180° horizontal, will enhance performance for
teleoperators performing off-road terrain navigational tasks in unfamiliar environments.



Additionally, the simulator sickness effects of wide FOV are noted in the Kress and Almaula
study as significant to the teleoperator in his or her environment.

For the application of a military field repair manipulator or a teleoperated vehicle
performing a reconnaissance mission, the stereo advantage for unfamiliar environment is crucial.
For Army teleoperation missions in which a large percentage of the missions may be conducted
in off-road, unfamiliar terrain, wide FOV may prove to be a necessity for situational awareness,
navigation, and close quarters maneuvering.

Hypotheses

The research on stereoscopic vision systems for teleoperation ranges from manipulation
to some limited driving studies. From the data available, it is difficult to draw definite
conclusions about the performance effect for monoscopic versus stereoscopic vision systems.
However, depth cues provided by stereoscopic imagery are expected to have an effect on both
performance and preference data over monoscopic imagery during tactical driving conditions
(Chubb, 1964; Crooks et al., 1975; Merritt, 1978; Smith et al., 1979; Cole & Parker, 1988;
Drascic et al., 1989; Drascic, 1991; McLean & Prescott, 1991; Pepper, 1983; McGovern, 1987).
Further, it is expected that the stereoscopic vision system will yield performance advantages and
will be preferred over the monoscopic vision system.

FOV is expected to yield performance and preference advantages because of the research
findings and suppositions in the literature (McGovern, 1987; Eveleth, 1976; Silverman, 1982;
Gordon, 1966). FOV is also expected to show a difference in reported motion sickness effects,
as reported in previous documentation.

An interaction between FOV and stereopsis is expected to provide significant
improvement in performance and preference over either of the individual effects.

It is also expected that the main and interaction effects of this study will yield significant
changes in perceived workload, stress, and motion sickness levels.

No hypotheses or expectations were made about the control measures of steering wheel,
brake, and accelerator activity.

It is important to note that all data reported in this report include actual on-board data for
baseline comparison.
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OBJECTIVES

The primary objective of this study is to determine if any performance, stress, cognitive
workload, motion sickness, or preference differences exist between the experimental conditions of
narrow and wide FOV (one center view or an expanded view with three cameras), FOV and
MOnoscopic or stereoscopic viewing, and the interaction of the two feedback mechanisms under a
tactical driving task.

METHODS
Participants

Participants were 24 male and female test participants, military and civilian, who met
requirements for binocular vision, 20/20 visual acuity, color and stereo vision. None of the

participants were familiar with the test course.

Apparatus
The necessary equipment for this study included

1. One Titmus® II Vision tester device.

2. A high mobility multi-purpose wheeled vehicle (HMMWYV), outfitted for
teleoperation, with three pairs of stereoscopic viewing cameras and an imagery transmission
system. Each stereo pair is outfitted with Panasonic charge coupled device (CCD) cameras and
6-mm (55° FOV) Fujinon lenses.

3. A mock-up of the HMMWYV control station with steering wheel, brake and accelerator
pedals, and three Sony Trinitron® viewing monitors. The stereoscopic video signals were
capable of being shown on all three screens. The test participants viewed the stereo imagery
through Toshiba, model VDG3D1 electronically shuttered glasses (see Figure 2).

4. A Sun™ computer and software written to capture time-stamped operator and vehicle
behavior data. Collected data consisted of vehicle speed, vehicle revolutions per minute, steering
wheel position, brake activity, accelerator position, and vehicle gear. These data were collected at
a rate of 20 Hz for possible future manual control modeling efforts.

11



5. A test course configured at the 13-acre Army Research Laboratory-Aberdeen Test
Center (ARL-ATC) outdoor robotics test course which includes sections of pertinent driving
scenarios such as straightaway, sharp turns, obstacle avoidance, hills, and slalom. This includes a
small figure eight training course (see Figure 3).

Figure 3. ARL-ATC outdoor robotics test course.

6. A demographic data sheet with which to collect all pertinent participant data including
pre-screening data. A sample is provided in Appendix A.

7. One self-reporting stress assessment method used to capture the participant’s stress
levels at different times (specific rating of event [SRE]).

8. The National Aeronautics and Space Administration task load index (NASA TLX),
which assesses cognitive workload).

12



9. A motion sickness questionnaire (MSQ) battery developed by Wiker, Kennedy,
McCauley, and Pepper (1979).

10. A questionnaire set, formulated to gather subjective ranked preference data from test
participants pertaining to the overall sensory feedback method preferred. (A sample is provided
in Appendix A.)

11. A laptop computer with which to collect and store demographic and questionnaire
data. .

12. Two stopwatches.

PROCEDURE AND METHODOLOGY

As part of the pre-test procedure, participants were given a volunteer affidavit, which
described the study and possible risks of motion sickness. There was a possibility that
participants would develop such simulator-sickness symptoms as slight eye strain to nausea and
dizziness. Participants were fully informed of this possibility.

They were then screened for binocular vision, 20/20 visual acuity, color and stereoscopic
vision using a Titmus® II visual testing device. If visual criteria were not met, the participants
were excused from the study. Demographic data were collected, and then the test participant
was asked to self rate present stress levels by using the SRE scale and to complete a motion
sickness assessment questionnaire, as baseline measures.

Before testing, three test course observers, who communicated via walkie-talkies, were
positioned at strategic points around the outside of the test course. These observers logged
vehicle-obstacle contact. One of the responsibilities of the two far observers was to contact the
remaining observer on the platform near the control trailer for emergency stops if necessary.

Training was provided about vehicle operation and safety procedures. Participants drove
on a small figure eight test course (see Figure 3). They were trained in the baseline feedback
condition (narrow FOV, monoscopic viewing) until the criterion was met. Accuracy was
emphasized over the speed of the vehicle. Training was considered complete when the means of
the last three training runs for the time performance measured within 5% of the last three runs’
grand mean. When the training criterion was met, the subject was given a briefing about test
course features such as barrel placement and navigational cues to use to negotiate the course

13



without experimenter intervention. The experimenter intervened only in the case of a serious
course deviation, giving only curt directions to the next navigational cue.

We adhered to ARL safety standing operating procedure (SOP) No. 385-2 supplement
No. 01 (Operation of Military and Commercial Telerobotics Systems, September 1990) and a
copy was available for reference at the test site. Additionally, we adhered to SOP 335-339, dated
23 Mar 1992 (pertaining to the operation of unmanned ground vehicles), an ATC document.

The study used a 2x2 randomized between-participants design. After being screened, all
test participants were randomly assigned to teleoperate in one of four possible experimental
conditions: narrow FOV-monoscopic vision, wide FOV-monoscopic vision, narrow FOV-
stereoscopic vision, or wide FOV-stereoscopic vision. Each experimental run was limited to only
one experimental trial to negate learning effects and to provide an unfamiliar environment.

Test participants were presented one of the four experimental conditions and proceeded
with one single run of the actual test course. Accuracy was emphasized over the speed of the
vehicle. Following the experimental treatment, each test participant’s cognitive workload, stress
levels, and motion sickness rating data were collected with the NASA TLX, the SRE (stress), and
the motion sickness questionnaire, respectively. Test participants were then shown all four of
the possible viewing conditions and were asked to rank order them according to overall preference
with a final questionnaire.

Test participants were then fully de-briefed and given a point of contact for pursuit of
individual performance or results of the study. Test participants were also informed that any
incidents of simulator sickness should be followed by a 1-hour observation period during which
the driving of a motor vehicle was strongly discouraged. This was to preclude any potential
flashback effects of simulator sickness, which have been known to occur in rare cases.

On-board data were also collected from three practiced HMMWYV drivers who were not
participants in this study. These on-board data were used for comparison to teleoperated
conditions,

RESULTS

The data for the performance measures of task time (time to complete the test course)
and error rate (number of obstacles hit and reversals of the vehicle) were analyzed with separate
two-way ANOV As for stereo-mono viewing versus narrow and wide FOV. No Signiﬁcant
interaction effects (stereo-mono viewing versus FOV size) were found for any of the dependent
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variables. Time data were included; however, no significant differences existed for time to
complete the test course. The ANOVAs for time data, in seconds, were as shown in Table 2.

Table 2
ANOQVAs for Time Data (seconds)

Condition df F P

Field of view x mono-stereo 1,20 16 .693
Field of view 1,20 1.86 .188
Mono-stereo 1,20 42 526

However, a significant main effect for difference in error rate in the stereoscopic-
monoscopic viewing conditions was found (F = 5.098, p <.035, df = 1,20). Of the errors
committed under the experimental task, the mean number of errors (obstacles contacted) per trial
was 6.91 for monoscopic and 4.66 for stereoscopic viewing conditions. The error rate data clearly
demonstrate the utility of stereoscopic viewing systems to judge depth in a driving task. Figures 4
and 5 illustrate the mean differences of time and error rate in graphical form. Note that in Figures 4
through 7, on-board data are included for comparison.
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Figure 4. Mean time data comparison.
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Figure 7. Mean motion sickness rating change score comparison for each group.

The vehicle control measures of steering wheel use, brake use, and accelerator use were
analyzed with two-way ANOVAs. No significant results were obtained.

The stress change scores, motion sickness change scores, and overall NASA TLX
workload scores were analyzed with two-way ANOVAs. No significant interactions were found,
but stress change scores were found to be significant on the stereoscopic-monoscopic viewing
dimension (F = 7.50, p <.012, df = 1,20). The mean stress change scores were 5.58 and 21.38, for
stereoscopic and monoscopic viewing conditions, respectively (see Figure 6). Additionally, a
significant difference in motion sickness change scores occurred on the narrow-wide FOV
dimension (F = 10.20, p <.004). The mean motion sickness change scores were 18.46 and 26.00
for narrow and wide FOV viewing conditions, respectively (see Figure 7).

The teleoperation rank order preference data and viewing dimension deemed most
important were analyzed using a chi-square analysis. The rank order preference data yielded a
significant difference from expected results (c = 8.769, p <.0325). Of 26 observed cases, 12
preferred the wide FOV-stereo condition, 8 preferred the narrow FOV stereo condition, and 3
each preferred the narrow and wide FOV mono conditions (see Figure 8). Data were also collected
to determine the single-most important viewing dimension. These data reflected the single aspect
of the viewing conditions felt to be most important by the participants. These data also yielded a

17



significant difference from expected results (c = 19.84, p <.0002). Of 26 observed cases, 16
preferred stereoscopic viewing, 4 preferred monoscopic viewing, 5 preferred wide FOV, and 1
preferred narrow FOV (see Figure 9).

. 12T

10 &

Number of Responses

Narrow FOV-Mono Wide FOV -Mono " Narrow FQV -Stereo Wide FOV - Stereo

Viewing Condition
Eigure 8. Experimental condition preference.

16 =
14 4+
124

10 +

Number of Responses

Narrow FOV Mono Wide FOV . Stereo

Viewing Condition
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An interesting facet of the study is that participants who reported that they were
moderately to severely susceptible to motion sickness were those who reported higher rates of
motion sickness attributes. Incidentally, two subjects of the entire subject pool failed to
complete the test course, after training, because of motion sickness effects (near emesis).

DISCUSSION

A remaining question arises about the contradictory nature of the FOV issue. The
literature reports that wide FOV is helpful in those tactical driving tasks that involve turning and
terrain navigation in unfamiliar surroundings. The literature also maintains a relationship between
wide FOV and simulator sickness, because of the lack of vestibular motion cues in the
teleoperators’ operating environment.

The FOV was not a significant factor in the results of this study. The data trend in Figure
5, however, demonstrates the real utility or “practical” significance of the combination of stereo
vision and wide FOV. The author maintains that if the tactical driving task had been an “open-
ended” navigational task using waypoints and terrain recognition as opposed to a path-following
driving task, FOV would have proved to be a significant factor in reducing error rate. It is also
speculated that FOV would have also contributed to an interaction effect between FOV and
depth perception,

It is given that some persons are not susceptible to simulator sickness effects and that
some are but are normally “trained” out of being negatively affected through repeated exposure to
simulator environments. Should military teleoperator selection criteria include screening for
susceptibility to simulator sickness, or should mechanical or medicinal interventions be further
investigated to mitigate these effects? Or both? It is offered that the simulator sickness effects
of the wide FOV will be “trained out™ over time and that a more refined teleoperator screening
criterion will reduce the sickness effects and enhance the performance effects of wide FOV.

Future studies involving teleoperated vehicles should involve the use of waypoint
navigation over varied and open terrain, which will most likely reveal significant performance
differences in the FOV conditions.

CONCLUSIONS

The results of this study demonstrated that there was a difference in the number of
obstacles hit between mono and stereo conditions. These differences show the utility of a
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stereoscopic viewing system to judge depth in the teleoperated driving task. This ability is
crucial to future teleoperated Army ground systems in that they must negotiate terrain without
suffering moderate to catastrophic damage to the vehicle or a subsystem. Judging depth in the
viewing scene substantially aids the driver in traversing around trees, avoiding rocks and other
debris, and enables the teleoperator to detect negative obstacles such as holes and ravines, and so
forth.

This evidence generally supports the manipulator-related work of Smith et al. (1979),
Cole and Parker (1988), Drascic et al. (1989), Drascic (1991), and McLean and Prescott (1991)
who demonstrated the advantage of stereo viewing systems for manipulators.

The data also support the findings and suggestions of driving-related research of Kama
(1965), Pepper (1983), and McGovern (1987) who generally concluded that stereo provides
performance advantages for tasks that require depth positioning, the identification of negative
obstacles or involve unfamiliar scenes. The accuracy of depth positioning of the HMMWYV,
which was driven between pairs of barrels on the test course, relied heavily on the use of stereo
vision technology to significantly reduce the number of errors committed.

The drastically divergent stress change scores that were associated with the mono-stereo
dimension are thought to be attributed to the increased level of attention and focus associated
with stereo driving. The stereo contributed depth perception to the teleoperator’s working
environment, allowing for more information to be processed, as there were various obstacles to be
avoided at nearly a continuous rate throughout the experimental driving task. This increase in
information processing demand could easily account for the increased stress levels.

The increased motion sickness change scores associated with the FOV dimension are
easily attributable to the wide FOV condition. The results strongly support the Kress and
Almaula (1988) findings that relate wide FOV to simulator sickness. Previous literature has
reported that the peripheral motion in side views '(whjch are typically added to a center view to
increase FOV) in combination with a lack of vestibular (inner ear, semi-circular canals) cues
induces simulator sickness effects. This can be induced to a greater or lesser degree, based on the
subject’s susceptibility to these effects.

The perceived utility of the different experimental conditions as reported by the
participants was overwhelmingly in favor of the stereo-wide FOV condition, with stereo-only
being a close second place. Additionally, a breakdown of this selection showed that the stereo
condition was the element that contributed to this phenomenon. The significant reduction in
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error rate during the stereo conditions is supported by the significant preferences of that visual
display system.

The conclusions from this study can be summarized as follows:
* Error rate was significantly reduced during stereo viewing conditions
* Stress ratings were significantly increased for stereo viewing conditions

« Simulator sickness ratings were significantly increased for wide FOV conditions

RECOMMENDATIONS

In summary, it is recommended that teleoperated systems that use remote control and
feedback technologies during conditions when it will be necessary to traverse unfamiliar terrain or
surroundings, use stereoscopic imaging systems. It is also recommended, based on trends in the
data, that enhanced FOV technologies such as multiple overlapping camera views or head-slaved
pan and tilt devices be used on these same systems. The combination of these two technologies
will provide the end user the greatest overall benefit for real-time, real-world use. The perception
of a wide FOV through the use of a fast-response pan and tilt mechanism would provide
essentially the same information as the overlapped camera views at one-third of the bandwidth
“cost”.
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APPENDIX A

QUESTIONNAIRES
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SUBJECT DATA FORM

Please answer the following questions as completely as possible. All information will be
coded and kept strictly CONFIDENTIAL.

SUBJECT ID: TASK ID:

1. Name

(last name) (first name) M)
isual Screening Data :

Color Vision [ ] yes Depth Perception [ ] yes 20/20 Vision (corrected) [ ] yes
[ ]mno []no [1no

2. If you are Military, please provide the following information:

Rank:
Military Occupational Specialty (MOS): 2nd MOS:
Time in Service: (years)

3. If you are Civilian, please provide the following information:

Job Title:
Job Series:
Time in Service: (years)

4. If you are neither Military nor Civilian, please provide the following information:

Job Title:

Time in Job: (vears)
5. Age:
6. Height:
7. Weight:

8. Handedness (right or left-handed):

9. Do you wear eyeglasses or contact lenses?:
10. Do you have a civilian driver's license?: How long?: (years)

11. Do you have a military driver's license?: How long?: (years)
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12. If you have a military driver's license, what vehicles are you qualified for?:

Vehicle Type How Many Years?

13. Have you ever done any high performance competetive driving (i.e. drag racing,
stock car racing, etc.)?:

If yes, please describe:

14. How often do you play video or arcade games? (check one)

Very Frequently [1]
Frequently [1]
Sometimes []
Rarely []
Never []

15. How well do you perform at video games? (check one) |

Exceptional []
Better than Moderate (1
Moderate []
Less than Moderate []
Poorly []

16. Have you ever operated a vehicle remotely (including radio controlled cars, planes, boats, etc.)?:

If yes, please describe:

17. Have you ever been motion sick (seasick, carsick, airsick, etc)?:

If yes, please describe:
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18. How susceptible are you to motion sickness? (check one)

Extremely [1]

Very []

Moderately []

Minimally []

Not at All [1]

VISION TEST PASS/FAIL

1. Binocular Vision: 4 Cubes 2 Cubes 3 Cubes
2. Acuity - Both Eyes 1 2 3 4 5 6 7 8 9
3. Stereo Depth 1 2 3 4 5 6
4, Color A B C D E F
5. Peripheral Vision 55 70 85
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Experimental Condition Rank-Order Form

SUBJECT ID: TASK ID:
Out of the four experimental conditions, two of which you were exposed to in the experiment,
and two of which you were shown after the experiment, how would you rank the order of
preference?
where 1 = least desireable
2 = little more desireable
3 = moderately desireable
4 = most desireable
Narrow Field of View - Monoscopic Viewing
Wide Field of View - Monoscopic Viewing

Narrow Field of View - Stereoscopic Viewing

Wide Field of View - Stereoscopic Viewing

Out of four possible single viewing conditions, how would you rank the order of preference?
where 1 = least desireable
2 = little more desireable
3 = moderately desireable
4 = most desireable
Narrow Field of View
Wide Field of View

Monoscopic Viewing

Stereoscopic Viewing
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